3.1394 \(\int \frac{x^7}{\sqrt{2+x^6}} \, dx\)

Optimal. Leaf size=186 \[ \frac{1}{5} x^2 \sqrt{x^6+2}-\frac{2\ 2^{5/6} \sqrt{2+\sqrt{3}} \left (x^2+\sqrt [3]{2}\right ) \sqrt{\frac{x^4-\sqrt [3]{2} x^2+2^{2/3}}{\left (x^2+\sqrt [3]{2} \left (1+\sqrt{3}\right )\right )^2}} F\left (\sin ^{-1}\left (\frac{x^2+\sqrt [3]{2} \left (1-\sqrt{3}\right )}{x^2+\sqrt [3]{2} \left (1+\sqrt{3}\right )}\right )|-7-4 \sqrt{3}\right )}{5 \sqrt [4]{3} \sqrt{\frac{x^2+\sqrt [3]{2}}{\left (x^2+\sqrt [3]{2} \left (1+\sqrt{3}\right )\right )^2}} \sqrt{x^6+2}} \]

[Out]

(x^2*Sqrt[2 + x^6])/5 - (2*2^(5/6)*Sqrt[2 + Sqrt[3]]*(2^(1/3) + x^2)*Sqrt[(2^(2/
3) - 2^(1/3)*x^2 + x^4)/(2^(1/3)*(1 + Sqrt[3]) + x^2)^2]*EllipticF[ArcSin[(2^(1/
3)*(1 - Sqrt[3]) + x^2)/(2^(1/3)*(1 + Sqrt[3]) + x^2)], -7 - 4*Sqrt[3]])/(5*3^(1
/4)*Sqrt[(2^(1/3) + x^2)/(2^(1/3)*(1 + Sqrt[3]) + x^2)^2]*Sqrt[2 + x^6])

_______________________________________________________________________________________

Rubi [A]  time = 0.264253, antiderivative size = 186, normalized size of antiderivative = 1., number of steps used = 3, number of rules used = 3, integrand size = 13, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.231 \[ \frac{1}{5} x^2 \sqrt{x^6+2}-\frac{2\ 2^{5/6} \sqrt{2+\sqrt{3}} \left (x^2+\sqrt [3]{2}\right ) \sqrt{\frac{x^4-\sqrt [3]{2} x^2+2^{2/3}}{\left (x^2+\sqrt [3]{2} \left (1+\sqrt{3}\right )\right )^2}} F\left (\sin ^{-1}\left (\frac{x^2+\sqrt [3]{2} \left (1-\sqrt{3}\right )}{x^2+\sqrt [3]{2} \left (1+\sqrt{3}\right )}\right )|-7-4 \sqrt{3}\right )}{5 \sqrt [4]{3} \sqrt{\frac{x^2+\sqrt [3]{2}}{\left (x^2+\sqrt [3]{2} \left (1+\sqrt{3}\right )\right )^2}} \sqrt{x^6+2}} \]

Antiderivative was successfully verified.

[In]  Int[x^7/Sqrt[2 + x^6],x]

[Out]

(x^2*Sqrt[2 + x^6])/5 - (2*2^(5/6)*Sqrt[2 + Sqrt[3]]*(2^(1/3) + x^2)*Sqrt[(2^(2/
3) - 2^(1/3)*x^2 + x^4)/(2^(1/3)*(1 + Sqrt[3]) + x^2)^2]*EllipticF[ArcSin[(2^(1/
3)*(1 - Sqrt[3]) + x^2)/(2^(1/3)*(1 + Sqrt[3]) + x^2)], -7 - 4*Sqrt[3]])/(5*3^(1
/4)*Sqrt[(2^(1/3) + x^2)/(2^(1/3)*(1 + Sqrt[3]) + x^2)^2]*Sqrt[2 + x^6])

_______________________________________________________________________________________

Rubi in Sympy [A]  time = 7.13869, size = 175, normalized size = 0.94 \[ \frac{x^{2} \sqrt{x^{6} + 2}}{5} - \frac{2 \cdot 3^{\frac{3}{4}} \sqrt{\frac{2 \sqrt [3]{2} x^{4} - 2 \cdot 2^{\frac{2}{3}} x^{2} + 4}{\left (2^{\frac{2}{3}} x^{2} + 2 + 2 \sqrt{3}\right )^{2}}} \sqrt{\sqrt{3} + 2} \left (2 x^{2} + 2 \sqrt [3]{2}\right ) F\left (\operatorname{asin}{\left (\frac{2^{\frac{2}{3}} x^{2} - 2 \sqrt{3} + 2}{2^{\frac{2}{3}} x^{2} + 2 + 2 \sqrt{3}} \right )}\middle | -7 - 4 \sqrt{3}\right )}{15 \sqrt{\frac{2 \cdot 2^{\frac{2}{3}} x^{2} + 4}{\left (2^{\frac{2}{3}} x^{2} + 2 + 2 \sqrt{3}\right )^{2}}} \sqrt{x^{6} + 2}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  rubi_integrate(x**7/(x**6+2)**(1/2),x)

[Out]

x**2*sqrt(x**6 + 2)/5 - 2*3**(3/4)*sqrt((2*2**(1/3)*x**4 - 2*2**(2/3)*x**2 + 4)/
(2**(2/3)*x**2 + 2 + 2*sqrt(3))**2)*sqrt(sqrt(3) + 2)*(2*x**2 + 2*2**(1/3))*elli
ptic_f(asin((2**(2/3)*x**2 - 2*sqrt(3) + 2)/(2**(2/3)*x**2 + 2 + 2*sqrt(3))), -7
 - 4*sqrt(3))/(15*sqrt((2*2**(2/3)*x**2 + 4)/(2**(2/3)*x**2 + 2 + 2*sqrt(3))**2)
*sqrt(x**6 + 2))

_______________________________________________________________________________________

Mathematica [C]  time = 0.372098, size = 133, normalized size = 0.72 \[ \frac{3 x^2 \left (x^6+2\right )-4 \sqrt [6]{-1} \sqrt [3]{2} 3^{3/4} \sqrt{(-1)^{5/6} \left (\sqrt [3]{-\frac{1}{2}} x^2-1\right )} \sqrt{\left (-\frac{1}{2}\right )^{2/3} x^4+\sqrt [3]{-\frac{1}{2}} x^2+1} F\left (\sin ^{-1}\left (\frac{\sqrt{\left (-i+\sqrt{3}\right ) \left (2^{2/3} x^2+2\right )}}{2 \sqrt [4]{3}}\right )|\sqrt [3]{-1}\right )}{15 \sqrt{x^6+2}} \]

Warning: Unable to verify antiderivative.

[In]  Integrate[x^7/Sqrt[2 + x^6],x]

[Out]

(3*x^2*(2 + x^6) - 4*(-1)^(1/6)*2^(1/3)*3^(3/4)*Sqrt[(-1)^(5/6)*(-1 + (-1/2)^(1/
3)*x^2)]*Sqrt[1 + (-1/2)^(1/3)*x^2 + (-1/2)^(2/3)*x^4]*EllipticF[ArcSin[Sqrt[(-I
 + Sqrt[3])*(2 + 2^(2/3)*x^2)]/(2*3^(1/4))], (-1)^(1/3)])/(15*Sqrt[2 + x^6])

_______________________________________________________________________________________

Maple [C]  time = 0.046, size = 33, normalized size = 0.2 \[{\frac{{x}^{2}}{5}\sqrt{{x}^{6}+2}}-{\frac{{x}^{2}\sqrt{2}}{5}{\mbox{$_2$F$_1$}({\frac{1}{3}},{\frac{1}{2}};\,{\frac{4}{3}};\,-{\frac{{x}^{6}}{2}})}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  int(x^7/(x^6+2)^(1/2),x)

[Out]

1/5*x^2*(x^6+2)^(1/2)-1/5*2^(1/2)*x^2*hypergeom([1/3,1/2],[4/3],-1/2*x^6)

_______________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \[ \int \frac{x^{7}}{\sqrt{x^{6} + 2}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate(x^7/sqrt(x^6 + 2),x, algorithm="maxima")

[Out]

integrate(x^7/sqrt(x^6 + 2), x)

_______________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \[{\rm integral}\left (\frac{x^{7}}{\sqrt{x^{6} + 2}}, x\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate(x^7/sqrt(x^6 + 2),x, algorithm="fricas")

[Out]

integral(x^7/sqrt(x^6 + 2), x)

_______________________________________________________________________________________

Sympy [A]  time = 2.54144, size = 36, normalized size = 0.19 \[ \frac{\sqrt{2} x^{8} \Gamma \left (\frac{4}{3}\right ){{}_{2}F_{1}\left (\begin{matrix} \frac{1}{2}, \frac{4}{3} \\ \frac{7}{3} \end{matrix}\middle |{\frac{x^{6} e^{i \pi }}{2}} \right )}}{12 \Gamma \left (\frac{7}{3}\right )} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate(x**7/(x**6+2)**(1/2),x)

[Out]

sqrt(2)*x**8*gamma(4/3)*hyper((1/2, 4/3), (7/3,), x**6*exp_polar(I*pi)/2)/(12*ga
mma(7/3))

_______________________________________________________________________________________

GIAC/XCAS [F]  time = 0., size = 0, normalized size = 0. \[ \int \frac{x^{7}}{\sqrt{x^{6} + 2}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate(x^7/sqrt(x^6 + 2),x, algorithm="giac")

[Out]

integrate(x^7/sqrt(x^6 + 2), x)